Operators and Spaces Associated to Matrices with Grades and Their Decompositions II
نویسندگان
چکیده
The paper is a continuation of our previous paper on operators and spaces associated to matrices whose degrees are elements from a residuated lattice. The motivation for this study is to develop a calculus for such matrices which can be used in situations such as matrix decompositions. In this paper, we focus on row and column spaces, left and right ideals of matrices, and Green’s relations. We prove basic results concerning these notions, show links to known structures, and put a new perspective on results known from Boolean matrices and their generalizations.
منابع مشابه
Factorization of matrices with grades
We present an approach to decomposition and factor analysis of matrices with ordinal data. The matrix entries are grades to which objects represented by rows satisfy attributes represented by columns, e.g. grades to which an image is red, a product has a given feature, or a person performs well in a test. We assume that the grades are taken from bounded scales equipped with certain aggregation ...
متن کاملDouble-null operators and the investigation of Birkhoff's theorem on discrete lp spaces
Doubly stochastic matrices play a fundamental role in the theory of majorization. Birkhoff's theorem explains the relation between $ntimes n$ doubly stochastic matrices and permutations. In this paper, we first introduce double-null operators and we will find some important properties of them. Then with the help of double-null operators, we investigate Birkhoff's theorem for descreate $l^p$ sp...
متن کاملSome inequalities involving lower bounds of operators on weighted sequence spaces by a matrix norm
Let A = (an;k)n;k1 and B = (bn;k)n;k1 be two non-negative ma-trices. Denote by Lv;p;q;B(A), the supremum of those L, satisfying the followinginequality:k Ax kv;B(q) L k x kv;B(p);where x 0 and x 2 lp(v;B) and also v = (vn)1n=1 is an increasing, non-negativesequence of real numbers. In this paper, we obtain a Hardy-type formula forLv;p;q;B(H), where H is the Hausdor matrix and 0 < q p 1. Also...
متن کاملWeak Banach-Saks property in the space of compact operators
For suitable Banach spaces $X$ and $Y$ with Schauder decompositions and a suitable closed subspace $mathcal{M}$ of some compact operator space from $X$ to $Y$, it is shown that the strong Banach-Saks-ness of all evaluation operators on ${mathcal M}$ is a sufficient condition for the weak Banach-Saks property of ${mathcal M}$, where for each $xin X$ and $y^*in Y^*$, the evaluation op...
متن کاملOptimal triangular decompositions of matrices with entries from residuated lattices
We describe optimal decompositions of an n m matrix I into a triangular product I 1⁄4 A / B of an n k matrix A and a k m matrix B. We assume that the matrix entries are elements of a residuated lattice, which leaves binary matrices or matrices which contain numbers from the unit interval [0,1] as special cases. The entries of I, A, and B represent grades to which objects have attributes, factor...
متن کامل